Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 14(23): 5304-5310, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34676999

RESUMO

Sodium-ion batteries (SIBs) have aroused great attention because of the low cost and environmental benignity of sodium resources. However, practical applications of SIBs are plagued by the sluggish kinetics of sodium ions with large size in the host structure, which results in poor rate performance and rapid capacity decline. Herein, a self-templated approach was developed to synthesize MoS2 /Cu2 Se nanosheets with improved interfacial electron- and ion-transfer kinetics. The MoS2 /Cu2 Se nanosheets provided superior sodium storage performance, delivering 139 mAh g-1 at a high current density of 100 A g-1 and 222 mAh g-1 after 14000 cycles (at 20 A g-1 ). The outstanding electrochemical performance was attributed to the synergetic engineering of interface and structure, which could enhance the electrochemical kinetics and gave excellent mechanical properties to deal with the volume expansion phenomenon. Combined with a high-voltage cathode, the full battery demonstrated a high energy density of 152 Wh kg-1 at a power density of 420 W kg-1 , which opens a new avenue for the development of high-performance SIBs.

2.
Nanoscale ; 12(26): 14004-14010, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32579652

RESUMO

The development of metal-organic frameworks (MOFs) as high-efficiency electrocatalysts for water splitting has attracted special attention due to their unique structural features including high porosity, large surface areas, high concentrations of active sites, uniform pore sizes and shapes, etc. Most of the related reports focus on the in situ generation of high-efficiency electrocatalysts by annealed MOFs. However, the pyrolysis process usually destroys the porous structure of MOFs and reduces the number of active sites due to the absence of organic ligands and agglomeration of metal centers. In this work, we prepared unique NiCo-MOF hollow nanospheres (NiCo-MOF HNSs) by a solvothermal method and further fabricated Fe-doped NiCo-MOF HNSs (Fe@NiCo-MOF HNSs) by a simple impregnation-drying method. Significant enhancement of electrocatalytic activity of Fe@NiCo-MOF HNSs was witnessed because of the doped Fe. Compared with the parent NiCo-MOF HNSs, the optimized Fe@NiCo-MOF HNSs exhibited a lower overpotential of 244 mV at 10 mA·cm-2 with a smaller Tafel slope of 48.61 mV·dec-1, which was lowered by ca. 90 mV due to the influence of Fe doping on the electronic structure of the active centers of Ni and Co. The above materials also displayed excellent stability without obvious activity decay for at least 16 hours. These findings present a new entry in the design and fabrication of high-efficiency MOF-based electrocatalysts for energy conversion.

3.
Nanoscale ; 12(8): 4816-4825, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32057061

RESUMO

Pristine metal-organic frameworks (MOFs) have received much attention in recent years due to their high specific surface areas, large porosity, excellent pore size distributions, flexible structure, and remarkable catalytic properties. The design of functional MOFs that can function as efficient HER and OER catalysts is significant in solving the energy crisis but remains a big challenge. Tri-metallic metal-organic frameworks show a good application prospect in water oxidation. In this review, we are going to focus on the latest progress and future trends in the development of pristine trimetallic MOFs with respect to the OER. The synergistic effect between multi-metal active sites is effective at improving the intrinsic activity of MOFs toward the OER. By summarizing the synthesis method of tri-metallic MOFs and observing their performance toward the oxygen evolution reaction, we hope that this review will trigger new developments in coordination chemistry, electrochemistry, nanomaterials and energy materials.

4.
RSC Adv ; 10(21): 12145-12150, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497616

RESUMO

As an important two-dimensional material, layered double hydroxides (LDHs) show considerable potential in electrocatalytic reactions. However, the great thickness of the bulk LDH materials significantly limits their catalytic activity. In this work, we report ultrathin NiFe-LDH nanosheets with sulfate interlayer anions (Ni6Fe2(SO4)(OH)16·7H2O) (U-LDH(SO4 2-)), which can be synthesized in gram-scale by a simple solvothermal method. The U-LDH(SO4 2-) shows excellent stability and great electrocatalytic performance in OER with a current density of 10 mA cm-2 at a low overpotential of 212 mV and a small Tafel slope of 65.2 mV dec-1, exhibiting its great potential for a highly efficient OER electrocatalyst.

5.
Inorg Chem ; 58(16): 11202-11209, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31385509

RESUMO

Design and synthesis of non-noble metal electrocatalysts with high activity and durability for the electrolysis of water is of great significance for energy conversion and storage. In this work, we prepared a series of Fe-doped MoS2 nanomaterials by simple one-pot solvothermal reactions of (NH4)2MoS4 with FeCl3·6H2O. An optimized working electrode of Fe-MoS2-5 displayed high hydrogen evolution reaction (HER) activity with a relatively small overpotential of 173 mV to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4, along with no significant change in catalytic performance even after 1000 cyclic voltammetry (CV) cycles. Fe-MoS2 nanoparticles on nickel foam (NF; denoted as Fe-MoS2/NF) exhibited an overpotential of 230 mV at 20 mA cm-2 for the oxygen evolution reaction (OER) and 153 mV at 10 mA cm-2 for the HER in 1.0 M KOH electrolyte. Fe-MoS2/NF was stable for more than 140 h under these conditions. Furthermore, the two electrode system of Fe-MoS2/NF (anode)//Fe-MoS2/NF (cathode) electrodes demonstrated excellent electrocatalytic activity toward overall water splitting with a low potential of 1.52 V at 10 mA cm-2 in 1.0 M KOH electrolyte.

6.
Dalton Trans ; 48(32): 12186-12192, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31334514

RESUMO

The development of bifunctional non-noble metal electrocatalysts demonstrating high activity and stability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of great significance for renewable and clean energy. In this work, we report hierarchically structured integrated Fe-MoS2/Ni3S2/NF (NF = nickel foam) materials prepared by a facile in situ solvothermal method, and among them, the Fe-doped MoS2 was assembled into spine-like nanorods. The optimized electrocatalyst (denoted as Fe-MoS2/Ni3S2/NF-2) demonstrated excellent activity and durability for performing the HER and OER in an alkaline electrolyte (pH = 14) with low overpotentials of 130.6 mV and 256 mV (vs. RHE) at a current density of 10 mA cm-2, as well as no significant loss in catalytic performance even after 2000 cyclic voltammetry (CV) cycles. An outstanding durability of 180 h could be achieved for OER. The overall water splitting made up of the two-electrode system with Fe-MoS2/Ni3S2/NF-2 as both the anode and the cathode required a voltage of only 1.61 V to drive a current density of 10 mA cm-2 along with an outstanding long-term stability of 20 h, displaying its great potential for application in water splitting. The effective construction of multi-component synergistic structures shows a good pathway for high-performance electrocatalysis and energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...